• その他のフルークグループ:
  • Fluke
  • Fluke Biomedical
  • Fluke Networks
  • Fluke Process Instruments
フルークブランドをさらに表示
Accelix Amprobe Beha-Amprobe Comark Emaint Landauer Pacific Laser Systems Pomona RaySafe Schad
ホーム
Precision, Performance, Confidence.
フルーク・キャリブレーション - Fluke Calibration Japan
  • 登録
  • ログ・イン
  • Contact Us

JP - Japanese (日本語) [Change]

 

Get Quote

Why did my temperature sensor fail calibration?

By Steve Iman

Temperature is the most commonly measured parameter in the world. Temperature sensors are used in instruments designed for measuring temperature. To be accurate, all temperature sensors must be calibrated against a known standard. Only short-term stability is checked during calibration. Long term stability should be monitored and determined by the user.

Occasionally, a temperature sensor might fail during calibration. This can happen even though the temperature sensor seemed to be functioning properly prior to sending it in for calibration. This article gives some basic reasons for temperature sensor failures and offers some suggestions to ensure their accuracy and maximize their useable life. In addition, some background knowledge is given on each temperature sensor type, including basic characteristics and their limitations.

Common temperature sensor types

Thermistors, platinum resistance thermometers (PRTs), and thermocouples are the instruments of choice for most temperature measurement applications. Each has specific characteristics and limitations. Normally, these instruments are reliable and give years of trouble-free service. Mistreating them, however, greatly affects their accuracy and useful life. Therefore, it’s imperative that they be handled and used properly. To do so, you must understand how they operate and what their limitations are.

5640 Series Thermistor Probe

Thermistors

Thermistors are among the most robust of all temperature sensors. They are constructed of a solid-state device that acts like a variable resistor. As the temperature changes, so does its resistance. These devices have excellent sensitivity and accuracy. They come in a wide range of resistance values. They have excellent long-term drift characteristics and are not shock sensitive, nor do they suffer from other concerns that other thermometer types may have. Because they are not shock sensitive, their calibrations generally are not affected by minor vibration, being bumped or dropped. However, their temperature ranges are usually limited to 100 ºC span.

Platinum resistance thermometers (PRTs)

5626 Secondary Standard PRT

PRTs are perhaps the most versatile of all temperature sensors because of their wide temperature range and high accuracy. Most are usable from -196 ºC to 420 ºC, with a few exceptions that reach up to 500 ºC or even higher. This, of course, depends on individual model specifications and their respective calibrations.

Even though PRTs are highly accurate and cover a wide temperature range, they do have limitations. Unlike thermistors, PRTs are subject to changes in calibration if the platinum wire is contaminated, exposed to vibration, bumped or dropped. Changes in calibration through these processes are cumulative. Therefore, great care must be taken when handling and using PRTs.

Thermocouples

Base metal thermocouples have advantages in that they have a very broad temperature range and are low in cost. Their disadvantages include relatively low accuracy, and, at very high temperatures, they are susceptible to inhomogeneity. Nobel metal thermocouples have a very broad temperature range with higher accuracy, but they cost more. Like base metal thermocouples, they are also susceptible to inhomogeneity.

5649 Type S Thermocouple Standard

Causes of failure during calibration

Self-heating in thermistors and PRTs

When thermistors and PRTs are calibrated, a nominal excitation current is applied. The amount of current that’s required is generally stated on the calibration report or manufacturer’s specifications.

We learn from Ohms Law that when a current flows through a resistor, power is dissipated (I2R). This power causes the sensor to heat; which is known as “self-heating.” When the temperature sensor is calibrated, its self-heating has been accounted for.

When using either sensor type, be sure to set the readout for the proper excitation current. Too little or too much current will cause measurement errors. These sensors can even be damaged if too much current is applied.

Some readouts will automatically choose the proper current when either “thermistor” or “PRT” is selected. Others may need to be set manually. The settings are generally in the probe setup menu. If you select the current manually, always refer to the thermometer’s specifications or calibration report for the proper current.

Low insulation resistance and leakage currents

Low insulation resistance is sometimes referred to as shunt resistance, because current is allowed to flow outside of the measurement circuit. Electrically, it is like putting another resistance in parallel with the sensor. When low insulation resistance occurs, too often the transition junction temperature has become too hot. (The hub should not be so hot that it is painful to touch.)

Additionally, low insulation resistance may result if the sheath has been bent, or if the seal has been compromised, allowing moisture to reach the sensor and lead wires. This problem usually can be avoided through proper use and handling.

Transition junctions

Thermistors and PRTs generally have transition junctions. The transition junction is where the cable lead wires connect to the sensor lead wires. The lead wires will either be soldered or spot welded. If they are soldered and the junction gets too hot, the solder will melt, causing an open or intermittent condition.

Usually, the junction is sealed with epoxy to keep out moisture and other contaminants. If the seal is subjected to temperatures that are beyond what the epoxy can handle, the seal may crack. This allows moisture and other contaminants to penetrate the seal and reach the lead wires and sensor. Moisture accumulation is most noticeable when the temperature sensor is left to soak at temperatures below ambient or if the ambient humidity is high.

PRTs are often packed with powdered insulative material. This material makes the PRT less susceptible to stress caused by mechanical shock. Unless a good seal exists, at low temperatures the insulation absorbs moisture from the air. Moisture or other contaminants create errors in the measurements and cause the temperature sensor to fail calibration. Trapped moisture can also present a safety concern. If the insulation has absorbed a lot of moisture and the temperature sensor is put into a high temperature heat source, the moisture will turn to steam, possibly causing the seal to blow or rupture the sheath.

Broken or intermittent lead wires

If the temperature sensor cable is pulled, overworked or stressed, the lead wires may break, causing an open or an intermittent connection. On occasion, open or intermittent sensor or sensor lead wires may occur. Some intermittent events are not noticeable until the temperature sensor is heated, causing the wire to expand and separate.

Even if great care has been taken to prevent broken or intermittent connections, they still may occur given enough time and use. The repeated expansion and contraction of the lead and sensor wires may eventually take its toll, causing the wire to break.

1586A Super-DAQ Precision Temperature Scanner

Contamination

Contamination can be caused by chemicals, metal ions or oxidation.

Chemical contamination can occur in PRTs if a liquid reaches the lead or sensor wires. This can change the purity of the platinum, which alters its electrical characteristics. Any changes in the purity will be permanent.

Metal Ion contamination of platinum wire usually occurs at 600 ºC and higher. Because PRT sensors are manufactured using high purity platinum wire, they are the most susceptible to this type of contamination. Metal ion contamination is not reversible and will cause a PRT to constantly drift upwards in temperature. This is particularly noticeable in a triple-point-of-water cell, where the reference temperature is extremely stable. When a PRT is manufactured for extremely high temperatures, it’s constructed in such a way that the sensor is protected from ion contamination.

Temperature sensor sheaths are usually sealed to guard against contamination. Both industrial and secondary temperature sensors are not evacuated before being sealed. Generally, therefore, there will be some dry air inside them. When they are exposed to various temperatures, oxidation can form on the surface of the wire. Oxidation primarily affects temperature sensors whose sensing elements contain platinum wire. Oxidation causes an increase in RTPW (resistance at the water triple point) in metallic RTDs. Fortunately, oxidation can be removed by annealing the RTD, using the manufacturer’s recommended temperature and procedure. Before and after annealing, compare the temperature sensor with a standard of superior accuracy such as a triple point of water cell. This allows you to determine whether the procedure was successful, and it helps you keep a history of the temperature sensor’s performance.

Hysteresis and non-repeatability

Hysteresis is a condition in which temperature sensor’s readings lag behind or appear to have a “memory” effect as the thermometer is moved through a sequential range of temperatures. Measured values depend on the previous temperature in which the sensor or wire was exposed. If a temperature sensor is taken through a range of temperatures for the first time—let’s say, from cold to hot—it will follow a particular curve. If the measurements are repeated in the reverse order, (hot to cold in our example), a thermometer that has a hysteresis problem will have an offset from the previous set of measurements. If repeated, the amount of offset may not always be the same.

Hysteresis does not occur with undamaged standard platinum resistance thermometers (SPRTs), because SPRTs are designed to be strain free. PRTs that are designed to be rugged, however, do not have a strain-free design and have at least some hysteresis. Moisture ingress, or moisture penetrating inside the temperature sensor, causes hysteresis in RTDs of any type.

Inhomogeneity

When a thermocouple is used at high temperatures, its wire may become contaminated. This causes the local Seebeck coefficient of the wire to change from its initial state. In other words, this alters the sensitivity of the wire to changes in temperature. However, the temperature exposure and contamination may not be uniform along the length of the thermocouple. The Seebeck coefficient then becomes a function of position along the thermocouple. This leads to measurement errors that depend on the temperature profile the thermocouple is exposed to all along the length of the thermocouple, and not just the temperature at the measurement junction.

1586A Super-DAQ Precision Temperature Scanner

Short-term stability

Measurement repeatability is a term than can be used many different ways. It should be defined by the person using the term. It often refers to the RTPW repeatability during a segment of thermal cycling or a calibration process.

When a temperature sensor fails to meet its short-term stability specification, it means the deviation between measurements at a particular temperature is outside its specification. This could be caused by a large standard deviation or by readings that continually drift in one direction. Potential causes for short-term stability problems include:

  • Moisture
  • Contamination
  • Strain
  • Leakage current
  • Mechanical shock
  • Inhomogeneity

To prevent temperature sensor failure and avoid contamination, you should take proper precautions when using temperature sensors in harsh environments. Do not subject the transition junction to higher or lower temperatures than the epoxy seal or transition junction can handle. Refer to the temperature sensor’s specifications or contact the temperature sensor manufacturer for the transition junction temperature specification. If there is a possibility that the transition junction could be exposed to high or even marginally high temperatures, a heat shield or heat sink is recommended.

Other ways to help prevent failure:

  • Do not drop, bump, or vibrate a PRT.
  • Never bend a sheath that isn’t designed to be bent. Even slight bends may adversely affect the calibration or temperature sensor life.
  • Never submerge the transition junction into a liquid.
  • Never exceed the temperature specification of the temperature sensor.
  • Do not soak temperature sensors for long periods of time, particularly at temperatures where oxidation is likely to occur.
  • Do not pull or overly strain the temperature sensor cable.
  • If a temperature sensor requires annealing, use recommended temperatures and techniques. Afterwards, always verify the temperature sensors accuracy by comparing it against a primary standard.
  • Periodically compare the temperature sensor’s accuracy to a primary standard, such as a water-triple-point cell or a calibrated SPRT (standard platinum resistance thermometer).

Additional Resources

Article - Calibrating Industrial Temperature Sensors >>

Application Note - Eliminating Sensor Errors in Loop Calibrations >>

On-Demand Webinar - How to Calibrate Temperature Sensors and Electronics Using Three Common Methods >>

Related products

Probes / Sensors (PRTs, Thermistors, and Thermocouples) >>

Digital Thermometer Readouts (DRTs) >>

Industrial Temperature Calibrators (Dry-Wells, Metrology Wells, and More) >>

  • ホーム
  • 製品
    • 新製品情報
    • 電気校正
      • 電気標準器
      • 電気校正器
      • ベンチ・マルチメーター
      • 電気校正ソフトウェア
    • RF 校正
      • RF リファレンス・ソース
      • RF 校正アクセサリー
      • RF 校正ソフトウェア
    • データ収集とテスト装置
      • ベンチ・マルチメーター
      • データ収集
      • データ収集ソフトウェア
    • 温度校正
      • ITS-90 温度標準器
        • ITS-90 定点セル
        • 標準白金抵抗温度計(SPRT)
        • メンテナンス装置
        • 液体窒素式比較校正装置
        • 抵抗ブリッジ
        • 標準抵抗器
      • 校正バス
        • 小型校正バス
        • 標準バス
        • 特殊アプリケーション用バス
        • バス用アクセサリー
        • バス・コントローラー
        • バス用温度媒体
      • 工業用温度校正器
        • フィールド・メトロロジー・ウエル
        • メトロロジー・ウェル
        • ハンドヘルド・ドライウェル校正器
        • フィールド・ドライウエル
        • 超小型バス
        • 赤外線校正器
        • 熱電対炉
        • デュアル・ブロック・ドライウエル
        • ゼロ点ドライウエル
      • プローブ/センサー
        • 白金抵抗温度計 (PRT)
        • サーミスター
        • 標準熱電対
      • デジタル温度指示計
      • マルチファンクション校正器
      • 温度校正ソフトウェア
    • 湿度校正
      • 湿度校正器
      • 湿度データ・ロガー/モニター
    • 圧力校正
      • ピストン・ゲージ
        • NMI ピストン・ゲージ
        • 絶対圧ピストン・ゲージ
        • 高圧力ガス・ピストン・ゲージ
        • 油圧式ピストン・ゲージ
        • ピストン・ゲージ用アクセサリー
      • 圧力コントローラー/校正器
        • 低圧力コントローラー/校正器
        • 空気式圧力コントローラー/校正器
        • 高圧空気式コントローラー/校正器
        • 油圧式コントローラー/校正器
      • 圧力モニター
        • 低圧力計
        • デジタル圧力計
        • 基準圧力モニター
      • 重錘形圧力計
        • 空気式デッドウェイト・テスター
        • 油圧式デッドウェイト・テスター
        • 液圧式デッドウェイト・テスター
        • 高圧油圧式デッドウェイト・テスター
        • デッドウェイト・テスター用アクセサリー
      • 手動校正器、モニター
        • 圧力校正器
        • 空気圧の制御
        • 液体圧比較器/ポンプ
      • Handheld Pressure Calibrators
      • エア・データ・テスト
      • ラボ環境モニター
      • 圧力校正アクセサリ
      • 圧力校正カスタム・システム
      • 圧力校正ソフトウェア
    • 流量校正
      • 気体流量標準器
      • 気体流量アクセサリ
      • GFS 質量流量一次標準
      • 流量校正ソフトウェア
    • プロセス校正ツール
      • 温度校正器
        • ハンドヘルド温度校正器
        • ドライブロック校正器およびマイクロバス
        • 高精度デジタル温度計
        • 温度プローブ
        • 赤外線温度計校正器
        • データ・ロギング機能付き湿温度計
      • 圧力校正器
        • デジタル圧力校正器
        • ハンドヘルド圧力校正器
        • 重錘形圧力計
        • 高精度デジタル圧力計
        • 校正用ハンド・ポンプ
      • マルチファンクション校正器
      • mA ループ校正器
      • プロセス校正ソフトウェア
    • 校正ソフトウェア
      • MET/CAL ソフトウェア
      • MET/CAL Support
      • 資産管理ソフトウェア
      • 温度校正ソフトウェア
      • 圧力校正ソフトウェア
      • 流量校正ソフトウェア
      • 機械/寸法校正ソフトウェア
    • サービスとサポート
    • すべての校正機器
  • ご購入について
    • 購入窓口
    • 見積依頼
    • デモ依頼
    • 相談/問い合わせ
    • Certified Pre-Owned Equipment
    • General Services Administration (GSA)
    • Financing Program
    • National Stock Numbers (NSNs)
    • Payment Options and Tax Info
  • ニュース
    • プレスリリース
    • プロモーション
    • 業界リンク
    • Metrology Salary Survey
  • トレーニングとイベント
    • 展示会/セミナー
    • トレーニング・コース
    • User Group Meetings
    • ウェブセミナー
      • ライブ・セミナー
      • 過去のセミナー(アーカイブ)
  • カタログ・資料
    • Education Hub
    • About Calibration
    • 参考資料
    • 製品資料
    • 製品マニュアル(ユーザー・ガイド)
    • Videos and Virtual Demos
    • Blog
  • サービスとサポート
    • Service Request (RMA)
    • Service Plans
    • ナレッジベース
    • 認定校正
    • サービスセンター
    • Calibration Certificates
    • Community Forum
    • My MET/SUPPORT
      • Activate
      • Procedures
      • Software
      • Technical Bulletins
      • Priority Support
      • Manuals
    • 製品マニュアル(ユーザー・ガイド)
    • 安全データ・シート(SDS)
    • 安全性および製品に関するお知らせ
    • ソフトウェア・ダウンロード
  • フルーク・キャリブレーション
    • お問い合わせ先
    • 所在地
    • キャリア
    • フルーク・キャリブレーションとは
      • Hart Scientific:温度校正
      • DH Instruments:圧力/流量校正
      • Pressurements:圧力校正
      • Ruska:圧力校正
    • 関連企業
    • 行動規範とコンプライアンス
    • よくある質問
ホーム|カタログ・関連資料|参考資料|温度校正|研究論文/記事|Why did my temperature sensor fail calibration?
©1995-2022 Fluke Corporation
             

Secondary menu

  • 免責事項
  • プライバシー・ステートメント
  • Terms of Use
  • Terms and Conditions of Sale