• その他のフルークグループ:
  • Fluke
  • Fluke Biomedical
  • Fluke Networks
  • Fluke Process Instruments
フルークブランドをさらに表示
Accelix Amprobe Beha-Amprobe Comark Emaint Landauer Pacific Laser Systems Pomona RaySafe Schad
ホーム
Precision, Performance, Confidence.
フルーク・キャリブレーション - Fluke Calibration Japan
  • 登録
  • ログ・イン
  • Contact Us

JP - Japanese (日本語) [Change]

 

High-pressure calibration and characterization in a production process

Document(s): 
application/pdf icon High-pressure calibration and characterization in a production process (274.72 KB)

Manufacturing pressure measurement devices must include a step to compare the devices’ output against a known, accurate pressure measurement. This step can happen in multiple different points in the process.

Depending upon the device being manufactured, it might be necessary to perform a characterization to correct for temperature influences (or other influences) on the output. Characterization is normally done by placing the device in an environmental chamber and comparing the device to a standard at multiple pressure points at multiple temperatures. The characterization process is time consuming and thus often done in batches with the devices not always in their final state.

The production process may also include a final calibration step. The final calibration is normally only performed at one temperature (ambient) and may require fewer pressure test points than were needed during the characterization process. The final calibration is the last opportunity to confirm the quality of the device being manufactured. It provides the actual measurement traceability of the final product. In this application note, we talk about characterization and calibration separately; however, in some circumstances, it may be acceptable to combine them into one process.

Selecting media

Pressure is transmitted between the device being manufactured and the pressure standard through some fluid, either gas or liquid. For very high pressures above 100 MPa (15,000 psi), a liquid media is almost always used. For lower pressures, gas is preferred. This is especially true when the device being manufactured is general purpose in nature and could be used in a variety of different processes. Any liquid residue could be incompatible with that process and thus it is easier to use a gas medium than to thoroughly clean the device before shipment.

Liquid has also been used at lower pressures because of limitations in available equipment and safety considerations. As the performance of high-pressure pneumatic standards has improved, they now can be used for these lower pressures as well as the higher pressures.

Automation

In today’s manufacturing world, automation plays a vital role. Automating the characterization and calibration processes is important, and not just to reduce labor cost. Automation removes user dependencies from the process and can improve the overall quality of the product being manufactured.

A deadweight tester or similar manual device might be used in low volume applications, areas with low labor costs, or in dated production processes where the equipment has not been upgraded in years. An automated solution like a pressure controller is preferable. For applications that require higher accuracy, automated piston gauges are available.

Pressure settling time

Pressure changes do not happen instantly. If data is being collected at multiple pressure points, the time required to reach each pressure point may consume a significant portion of the overall manufacturing process. It’s possible to reduce the time required, but be careful to ensure that there are no negative effects on process quality.

A change in the pressure at one place in an enclosed system is transmitted throughout the entire system. Delays can occur when there are significant flow restrictions in the system. Sometimes these flow restrictions are necessary. High-pressure tubing generally has a smaller internal diameter than low-pressure tubing.

How do you determine how much time is necessary to wait for stabilization? Unfortunately, there is no one simple, straightforward answer that works in all applications. The required time depends on the overall system design and the technology being used. The best approach is to determine the stabilization time via experimentation. When designing your process, perform multiple calibrations using ever increasing stabilization times. You can then evaluate the data to find where the results are repeatable and thus find the minimum acceptable stabilization time.

The media choice can also impact settling time. In most cases, a pneumatic pressure controller can reach a stable pressure faster than a hydraulic controller. Gas media is less influenced by temperature effects than hydraulic media, making it easier for the pressure to stabilize. If using a liquid system, it’s extremely important to remove any gas from the system using a purge-and-fill process. The pressure generation method for a hydraulic controller is dependent on the medium being liquid and non-compressible. Gas systems do not require a purge-and-fill process, reducing the overall process time.

Pressure stability

To make a valid pressure measurement, the pressure must be sufficiently stable. However, pressure is inherently unstable, as it is affected by changes in temperature and any leaks in the system. Therefore, it is a best practice to find and remove any leaks from the pressure system. An automated controller will attempt to maintain a stable pressure. There are limitations to its ability due to the resolution and response time of the measurement sensor and the mechanics of the valves used. There are different terms used to specify these factors, including control precision and control stability. These specifications are normally provided as a function of either the full scale of the controller or the full scale of the measurement range. Because of this, take care that the stability of the pressure is sufficient when controlling lower pressures. With an automated system, control instability can be included in your overall measurement uncertainty by taking multiple measurements, averaging those measurements for the recorded measurement, and including the standard deviation in your uncertainty.

Measurement performance impact on characterization

The characterization process is used to linearize the reference standard, eliminating impacts from variables like temperature. Any non-linearity in the reference standard will be transferred to the device being manufactured. Therefore, it is important to consider linearity when choosing a reference standard. Linearity is commonly included in the precision specification. Nonlinearity can potentially occur when two or more pressure sensors are used to cover the overall range. The two pressures can be individually linear, but if they have different slopes, the overall range will be non-linear. In most applications, if the pressure sensors are routinely calibrated, the two lines will be in agreement and the overall range will be sufficiently linear. If characterization and calibration are done separately, the overall uncertainty of the reference standard isn’t the greatest concern. The goal is linearity, which can be obtained even if the span of the reference standard has drifted. If characterization and calibration are done using the same equipment (or the equipment has multiple pressure sensors) then routine calibration is a necessity.

Measurement performance impact on calibration

The measurement performance of the reference standard has a direct impact on the performance and quality of the devices being manufactured. The overall uncertainty of the reference standard must be sufficient to validate the performance of the manufactured devices. Different applications require different levels of uncertainty, but a common rule of thumb is a 4:1 ratio between the device under test and the reference standard.

Maintenance considerations

Maximizing uptime is imperative for high volume production lines. Money is lost when a malfunction causes the production line to go down. Therefore, it is imperative to use reference standards that are robust, reliable, and easy to maintain. This is especially true when working with high pressures. High pressure puts more stress on the control components. At high pressure, leaks are also more prevalent, putting more stress on the system. Robust design is a necessity. To better support maintainability, many pressure controllers now use a modular design. Proper modularity allows measurement and control components to be easily removed and replaced. Measurement modules can be easily removed for recalibration. Control functionality can also be modularized, allowing the control module to be easily replaced for preventive maintenance or repair. Modularity also may allow for the easy re-ranging (or range expansion) of a controller, providing for more flexibility in production cell design.

Selecting a pressure standard

When selecting a pressure standard for manufacturing environments, here are some things to consider.

Media. Where feasible, a gas medium is preferable as it will not contaminate the freshly manufactured devices. A liquid medium leaves a residue that potentially limits the application space for the product. For extremely high pressures, greater than 100 MPa (15,000 psi), hydraulic is predominately used.

Range. What is the highest pressure that must be tested? What is the lowest? Can both be attained using one controller? Does the controller provide flexibility by allowing for the easy expansion of additional range coverage?

Measurement performance. Measurement performance must be sufficient for the application. For characterization applications, is the sensor sufficiently linear? For calibration applications, is the overall uncertainty sufficient? Is the controller provided with an accredited calibration and can it be recalibrated with an accredited calibration?

Control Performance. Will the pressure be sufficiently stable at all pressures where you need to test? Will it control pressure quickly enough? Are there any unique things about your system setup that will affect control? This includes large test volumes, flow restrictions, or extreme leaks. 

6270A Modular Pressure Controller & Calibrator

Reliability. Is the controller reliable? Will downtime be minimized?

Maintainability. Can measurement and control modules be removed easily, even when the unit is installed in the production process? Can new pressure modules be installed easily, allowing for range expansion? Are the modules priced so that it is feasible to have spare modules, rotating out modules to eliminate downtime caused by recalibration? Is there sufficient documentation available so that you can handle simple maintenance and repairs in-house?

Conclusion

Maximizing uptime is imperative for high volume production lines. Money is lost when a malfunction causes the production line to go down. Therefore, it is imperative to use reference standards that are robust, reliable, and easy to maintain.

  • ホーム
  • 製品
    • 新製品情報
    • 電気校正
      • 電気標準器
      • 電気校正器
      • ベンチ・マルチメーター
      • 電気校正ソフトウェア
    • RF 校正
      • RF リファレンス・ソース
      • RF 校正アクセサリー
      • RF 校正ソフトウェア
    • データ収集とテスト装置
      • ベンチ・マルチメーター
      • データ収集
      • ファンクションおよび波形ジェネレーター
      • データ収集ソフトウェア
    • 温度校正
      • ITS-90 温度標準器
        • ITS-90 定点セル
        • 標準白金抵抗温度計(SPRT)
        • メンテナンス装置
        • 液体窒素式比較校正装置
        • 抵抗ブリッジ
        • 標準抵抗器
      • 校正バス
        • 小型校正バス
        • 標準バス
        • 特殊アプリケーション用バス
        • バス用アクセサリー
        • バス・コントローラー
        • バス用温度媒体
        • カスタム温度校正バス
      • 工業用温度校正器
        • フィールド・メトロロジー・ウエル
        • メトロロジー・ウェル
        • ハンドヘルド・ドライウェル校正器
        • フィールド・ドライウエル
        • 超小型バス
        • 赤外線校正器
        • 熱電対炉
        • デュアル・ブロック・ドライウエル
        • ゼロ点ドライウエル
      • プローブ/センサー
        • 白金抵抗温度計 (PRT)
        • サーミスター
        • 標準熱電対
      • デジタル温度指示計
      • マルチファンクション校正器
      • 温度校正ソフトウェア
    • 湿度校正
      • 湿度校正器
      • 湿度データ・ロガー/モニター
    • 圧力校正
      • ピストン・ゲージ
        • NMI ピストン・ゲージ
        • 絶対圧ピストン・ゲージ
        • 高圧力ガス・ピストン・ゲージ
        • 油圧式ピストン・ゲージ
        • ピストン・ゲージ用アクセサリー
      • 圧力コントローラー/校正器
        • 低圧力コントローラー/校正器
        • 空気式圧力コントローラー/校正器
        • 高圧空気式コントローラー/校正器
        • 油圧式コントローラー/校正器
      • 圧力モニター
        • 低圧力計
        • デジタル圧力計
        • 基準圧力モニター
      • 重錘形圧力計
        • 空気式デッドウェイト・テスター
        • 油圧式デッドウェイト・テスター
        • 液圧式デッドウェイト・テスター
        • 高圧油圧式デッドウェイト・テスター
        • デッドウェイト・テスター用アクセサリー
      • 手動校正器、モニター
        • 圧力校正器
        • 空気圧の制御
        • 液体圧比較器/ポンプ
      • Handheld Pressure Calibrators
      • エア・データ・テスト
      • ラボ環境モニター
      • 圧力校正アクセサリ
      • 圧力校正カスタム・システム
      • 圧力校正ソフトウェア
    • 流量校正
      • 気体流量標準器
      • 気体流量アクセサリ
      • GFS 質量流量一次標準
      • 流量校正ソフトウェア
    • プロセス校正ツール
      • 温度校正器
        • ハンドヘルド温度校正器
        • ドライブロック校正器およびマイクロバス
        • 高精度デジタル温度計
        • 温度プローブ
        • 赤外線温度計校正器
        • データ・ロギング機能付き湿温度計
      • 圧力校正器
        • デジタル圧力校正器
        • ハンドヘルド圧力校正器
        • 重錘形圧力計
        • 高精度デジタル圧力計
        • 校正用ハンド・ポンプ
      • マルチファンクション校正器
      • mA ループ校正器
      • プロセス校正ソフトウェア
    • 校正ソフトウェア
      • MET/CAL ソフトウェア
      • MET/CAL Support
      • 資産管理ソフトウェア
      • 温度校正ソフトウェア
      • 圧力校正ソフトウェア
      • 流量校正ソフトウェア
      • 機械/寸法校正ソフトウェア
    • サービスとサポート
    • すべての校正機器
  • ご購入について
    • 購入窓口
    • 見積依頼
    • デモ依頼
    • 相談/問い合わせ
    • Certified Pre-Owned Equipment
    • General Services Administration (GSA)
    • Financing Program
    • National Stock Numbers (NSNs)
    • Payment Options and Tax Info
  • ニュース
    • プレスリリース
    • プロモーション
    • 業界リンク
    • Metrology Salary Survey
  • トレーニングとイベント
    • 展示会/セミナー
    • トレーニング・コース
    • User Group Meetings
    • ウェブセミナー
      • ライブ・セミナー
      • 過去のセミナー(アーカイブ)
  • カタログ・資料
    • Education Hub
    • About Calibration
    • 参考資料
    • 製品資料
    • 製品マニュアル(ユーザー・ガイド)
    • Videos and Virtual Demos
    • Blog
  • サービスとサポート
    • Service Request (RMA)
    • Service Plans
    • ナレッジベース
    • 認定校正
    • サービスセンター
    • Calibration Certificates
    • Community Forum
    • My MET/SUPPORT
      • Activate
      • Procedures
      • Software
      • Technical Bulletins
      • Priority Support
      • Manuals
    • 製品マニュアル(ユーザー・ガイド)
    • 製品の登録
    • 安全データ・シート(SDS)
    • 安全性および製品に関するお知らせ
    • ソフトウェア・ダウンロード
  • フルーク・キャリブレーション
    • お問い合わせ先
    • 所在地
    • キャリア
    • フルーク・キャリブレーションとは
      • Hart Scientific:温度校正
      • DH Instruments:圧力/流量校正
      • Pressurements:圧力校正
      • Ruska:圧力校正
    • 関連企業
    • 行動規範とコンプライアンス
    • よくある質問
ホーム|カタログ・関連資料|参考資料|圧力校正|アプリケーション・ノート|High-pressure calibration and characterization in a production process

サイトの改善のため、フィードバックをお寄せください。
フィードバック・フォーム≫
©1995-2021 Fluke Corporation
             

Secondary menu

  • 免責事項
  • プライバシー・ステートメント
  • ウェブマスター
  • Terms of Use
  • Terms and Conditions of Sale